视频帧插值,旨在在视频序列中合成不存在中间帧,是计算机视觉中的重要研究主题。现有的视频帧插值方法在特定假设下实现了显着的结果,例如瞬间或已知的曝光时间。然而,在复杂的真实情况下,视频的时间前锋,即每秒帧(FPS)和帧曝光时间,可能与不同的相机传感器不同。当在从训练中的不同曝光设置下进行测试视频时,内插帧将遭受显着的错位问题。在这项工作中,我们在一般情况下解决了视频帧插值问题,其中可以在不确定的曝光(和间隔)时间下获取输入帧。与以前可以应用于特定时间的方法的方法不同,我们从四个连续的尖锐帧或两个连续的模糊帧中导出一般的曲线运动轨迹公式,没有时间前导者。此外,利用相邻运动轨迹内的约束,我们设计了一种新的光学流细化策略,以获得更好的插值结果。最后,实验表明,一个训练有素的模型足以在复杂的真实情况下合成高质量的慢动作视频。代码可在https://github.com/yjzhang96/uti-vfi上使用。
translated by 谷歌翻译
尽管令人鼓舞的是深泡检测的进展,但由于训练过程中探索的伪造线索有限,对未见伪造类型的概括仍然是一个重大挑战。相比之下,我们注意到Deepfake中的一种常见现象:虚假的视频创建不可避免地破坏了原始视频中的统计规律性。受到这一观察的启发,我们建议通过区分实际视频中没有出现的“规律性中断”来增强深层检测的概括。具体而言,通过仔细检查空间和时间属性,我们建议通过伪捕获生成器破坏真实的视频,并创建各种伪造视频以供培训。这种做法使我们能够在不使用虚假视频的情况下实现深泡沫检测,并以简单有效的方式提高概括能力。为了共同捕获空间和时间上的破坏,我们提出了一个时空增强块,以了解我们自我创建的视频之间的规律性破坏。通过全面的实验,我们的方法在几个数据集上表现出色。
translated by 谷歌翻译
面部伪造技术的最新进展几乎可以产生视觉上无法追踪的深冰录视频,这些视频可以通过恶意意图来利用。结果,研究人员致力于深泡检测。先前的研究已经确定了局部低级提示和时间信息在追求跨层次方法中概括的重要性,但是,它们仍然遭受鲁棒性问题的影响。在这项工作中,我们提出了基于本地和时间感知的变压器的DeepFake检测(LTTD)框架,该框架采用了局部到全球学习协议,特别关注本地序列中有价值的时间信息。具体而言,我们提出了一个局部序列变压器(LST),该局部序列变压器(LST)对限制空间区域的序列进行了时间一致性,其中低级信息通过学习的3D滤波器的浅层层增强。基于局部时间嵌入,我们然后以全球对比的方式实现最终分类。对流行数据集进行的广泛实验验证了我们的方法有效地发现了本地伪造线索并实现最先进的表现。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译